KI simuliert Evolution: So entstehen Insekten- und Linsenaugen
Ein Forschungsteam hat die Evolution des Auges in einer Physik-Simulation nachgebaut. Die Ergebnisse zeigen, warum die Natur so unterschiedliche Formen wählte.
Ein internationales Team aus Forschern des MIT, der Rice University und der Universität Lund hat die Evolution des Auges simuliert und zeigt auf, dass die Vielfalt von Augenformen in der Natur kein Zufall ist, sondern das Ergebnis von Selektion. Das Team um Kushagra Tiwary vom MIT entwickelte ein Framework namens „What if Eye…?", das Agenten in einer 3D-Umgebung evolvieren lässt – ähnlich wie Spielfiguren in einem Videospiel, die jedoch nicht von Menschen gesteuert werden, sondern lernen und sich verändern. Dabei entstanden – ohne externe Vorgaben – sowohl die Facettenaugen von Insekten als auch die hochauflösenden Linsenaugen von Raubtieren und Menschen.
Die Studie erschien kürzlich im Fachjournal „Science Advances"; eine Preprint-Fassung der Arbeit ist seit Anfang des Jahres bei arXiv verfügbar.
Evolution als Single-Player-Game
Zentral an der Arbeit ist ein Framework auf Basis der sogenannten Embodied AI (verkörperte Künstliche Intelligenz). Die Forschenden modellierten ihre Agenten als Single-Player-Games mit spezifischen Spielregeln: Ein Agent erhält Belohnungspunkte für erfolgreiche Aktionen (sogenannte „Rewards"), genau wie ein Spieler Punkte sammelt. Diese Reward-Struktur treibt die Evolution an.
Anders als bei klassischen Computer-Vision-Modellen, die lediglich statische Bilder in Datenbanken klassifizieren, simulierten die Forschenden ganze Agenten in einer physikalisch korrekten 3D-Umgebung auf Basis der MuJoCo-Physics-Engine. Die Agenten bewegen sich durch diese Welt wie NPCs (Non-Player-Characters) in einem Videospiel – mit Sensorik, Körper und Motorik.
Dabei griffen die Wissenschaftler auf einen methodisch anspruchsvollen Mix zurück: Ein genetischer Algorithmus (CMA-ES) steuerte über hunderte von Generationen hinweg die Mutationen des „Genoms", das sowohl die Bauform der Augen als auch die Architektur des Gehirns festlegte. Innerhalb ihrer „Lebensspanne" trainierten die individuellen Agenten dann ihr neuronales Netz mittels Reinforcement Learning. Dieses Verfahren wird auch bei modernen Videospiel-KIs wie AlphaGo verwendet. Dabei sollten die Agenten mit der ihnen gegebenen Hardware bestmöglich zurechtkommen. Jeder löste also sein persönliches Mini-Spiel – und wer am besten spielte, durfte seine Gene weitergeben. Dieser Ansatz der Co-Evolution zwang das System dazu, Hardware und Software gleichzeitig zu optimieren – ein hochauflösendes Auge bringt schließlich keinen Vorteil, wenn das Gehirn die Datenflut nicht verarbeiten kann.
Um zu prüfen, ob der Selektionsdruck tatsächlich die Bauform der Augen diktiert, konfrontierte das Team die Agenten mit zwei grundlegend verschiedenen Spiel-Szenarien. Im ersten Szenario war die Mission: schneller durch ein Labyrinth navigieren. Die Belohnung kam für jede Sekunde Zeit, die gespart wurde. Die Evolution brachte hier eine Lösung hervor, die stark an die Facettenaugen von Insekten erinnert. Die Agenten entwickelten ein Netzwerk aus weit verteilten, einfachen Augen, die den Kopf umrundeten. Diese Konfiguration opferte Detailschärfe zugunsten eines enormen Sichtfeldes von rund 135 Grad, um den optischen Fluss zur Hinderniserkennung zu nutzen. Wer nicht sehen konnte, was links und rechts kommt, prallte gegen die Wand und verlor Punkte.